Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
The Journal of biological chemistry ; 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2305464

RESUMEN

Coronavirus disease 2019 (COVID19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus binds to angiotensinogen converting enzyme 2 (ACE2) which mediates viral entry into mammalian cells. COVID19 is notably severe in elderly and those with underlying chronic conditions. The cause of selective severity is not well understood. Here we show cholesterol and the signaling lipid phosphatidyl-inositol 4,5 bisphosphate (PIP2) regulate viral infectivity through the localization of ACE2's into nanoscopic (<200 nm) lipid clusters. Uptake of cholesterol into cell membranes (a condition common to chronic disease) causes ACE2 to move from PIP2 lipids to endocytic ganglioside (GM1) lipids, where the virus is optimally located for viral entry. In mice, age, and high fat diet increase lung tissue cholesterol by up to 40%. And in smokers with chronic disease, cholesterol is elevated two-fold, a magnitude of change that dramatically increases infectivity of virus in cell culture. We conclude increasing the ACE2 location near endocytic lipids increases viral infectivity and may help explain the selective severity of COVID-19 in aged and diseased populations.

2.
Cell Chem Biol ; 30(3): 233-234, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2262143

RESUMEN

In this issue of Cell Chemical Biology, Miao et al. develop probes for live cell tracking of SARS-CoV-2. The probes reveal the endocytic pathway for viral entry. Unexpectedly, the antiviral compound BafA1 traps the virus on the cell surface, highlighting the power of super-resolution imaging in live cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , Internalización del Virus
4.
Commun Biol ; 5(1): 958, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2028733

RESUMEN

Hydroxychloroquine (HCQ), a drug used to treat lupus and malaria, was proposed as a treatment for SARS-coronavirus-2 (SARS-CoV-2) infection, albeit with controversy. In vitro, HCQ effectively inhibits viral entry, but its use in the clinic has been hampered by conflicting results. A better understanding of HCQ's mechanism of actions in vitro is needed. Recently, anesthetics were shown to disrupt ordered clusters of monosialotetrahexosylganglioside1 (GM1) lipid. These same lipid clusters recruit the SARS-CoV-2 surface receptor angiotensin converting enzyme 2 (ACE2) to endocytic lipids, away from phosphatidylinositol 4,5 bisphosphate (PIP2) clusters. Here we employed super-resolution imaging of cultured mammalian cells (VeroE6, A549, H1793, and HEK293T) to show HCQ directly perturbs clustering of ACE2 receptor with both endocytic lipids and PIP2 clusters. In elevated (high) cholesterol, HCQ moves ACE2 nanoscopic distances away from endocytic lipids. In cells with resting (low) cholesterol, ACE2 primarily associates with PIP2 clusters, and HCQ moves ACE2 away from PIP2 clusters-erythromycin has a similar effect. We conclude HCQ inhibits viral entry through two distinct mechanisms in high and low tissue cholesterol and does so prior to inhibiting cathepsin-L. HCQ clinical trials and animal studies will need to account for tissue cholesterol levels when evaluating dosing and efficacy.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Animales , Técnicas de Cultivo de Célula , Colesterol , Células HEK293 , Humanos , Hidroxicloroquina/farmacología , Lípidos , Mamíferos , Peptidil-Dipeptidasa A , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA